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Gene expression and differentiation were shown to be stochastic processes. However, cells in a tissue can
coordinate their behavior, including gene expression and differentiation pathways choice. A tissue of coupled
cells is modeled as a two-dimensional regular square lattice of identical cells, each a three-dimensional com-
partment with a gene regulatory network �GRN� and a toggle switch �TS�. The dynamics is driven by a delayed
stochastic simulation algorithm, nearest neighbor cells are coupled by normally distributed time delayed reac-
tions allowing interchange of proteins, and gene expression is a multiple time delayed reaction. It is defined the
coupling strength �C�, to characterize the lattice structure as a function of the rate constants of the reactions
coupling nearest neighbor cells. Conditions are investigated for the emergence of synchronization and stable
differentiation of cells within a tissue. From the time series of the cells GRNs, the tissue dynamical stability �S�
is computed from the average toggling period of each GRN. The synchronization of cells’ proteins expression
levels is measured by their time series entropy �H�. It is shown that the tissue goes through various dynamical
regimes as C is increased, by measuring H and S. For null C, the cells GRNs toggle asynchronously. For weak
C, cells synchronize by regions of space. Increasing C, the tissue becomes homogeneously synchronous. As C
is further increased, S goes through a phase transition, from synchronized toggling to stable, where all cells
produce one and the same protein. Finally, increasing C even further, a new stable state emerges where both
genes of all cells are expressed and bistability is lost. This state, resembling an infinitely long transient, is an
emergent behavior not observable in a single TS. The results provide an explanation of how cells with bistable
GRNs, inherently stochastic, can synchronize or uniformly differentiate into stable states, by interacting with
nearest neighbors.
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I. INTRODUCTION

It remains a challenge to understand how GRNs of cells
can interact with the GRNs of neighboring cells when these
cells are embedded in a tissue, and how and what emergent
behaviors might arise from the interactions.

Cells in a tissue can interact and influence their neighbor-
ing cells by different mechanisms, such as via diffusible sig-
naling molecules, direct contact through transmembrane pro-
teins, and gap junctions that allow a direct interchange of
signaling molecules �1–4�.

Interactions among cells can lead to synchrony of internal
cellular processes and formation of spatial patterns in colo-
nies of cells �5–7�. For example, morphogenetic gradients
and sequential induction have been proposed as possible
mechanisms to explain pattern formation �1�.

Many of these processes are controlled by the dynamics
of the GRNs of the cells. Two features have been identified
as non-negligible in the dynamics of GRNs: Stochasticity
and time duration of transcription and translation.

Stochastic fluctuations of gene expression were proven to
have a significant role at the single-cell level �8,9�, causing
stochastic pathway selection �10,11�, and their relevance is
enhanced by the discrete nature of the transcription factors
and their binding sites, which exist in low copy numbers
�12,13�. Stochasticity is further enhanced by the fact that
many processes in cells, namely gene expression, involve a

small number of molecules. For example, genes have only
one or very few copies of its promoter region. In agreement,
the more accurate modeling strategies at a detailed level
�14,15�, are based on the stochastic simulation algorithm
�SSA� �16,17�.

Time delays in gene expression have been shown to be an
important regulating mechanism of GRNs �18�. Although
models of nondelayed reactions accurately explain most ex-
perimental data regarding fluctuations in gene expression
�10,19,20�, these studies focused on steady state dynamics,
where the delayed and nondelayed models have the same
results after a transient. To accurately model GRNs in more
complex conditions �e.g., involving feedback mechanisms�,
time delayed reactions are necessary for modeling transcrip-
tion and translation �21–23�. For example, time delayed re-
actions were necessary to mimic recent measurements of
single gene expression at the single molecules level �23,24�.

Finally, in cellular tissue models, where the dynamics is
constrained by spatial compartmentalization, diffusion and
membrane crossing of signaling molecules should be mod-
eled by reactions with delays following some normal distri-
bution, accounting for their time duration �25,26�.

Accordingly, the dynamics is here driven by SGN Sim �27�,
a simulator based on a modified version of the original SSA
�17�, the multiple time-delayed SSA �21�, that can model
gene expression as multitime delayed events �28� and cell-
cell interactions as normally distributed delayed events.

Since it is studied how cells GRNs can synchronize and
make collective choices, e.g., regarding differentiation path-
ways, the choice of what GRN to place in each cell is based
on a long standing hypothesis that cell differentiation is con-*andre.sanchesribeiro@tut.fi
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trolled by bistable genetic subcircuits with many downstream
genes �29�. In this process, a stem cell turns into a stable
phenotype �30�. The GRN decision subcircuit for differenti-
ating should be, at the same time, �at least� bistable, to allow
branching into distinct cell types, and reliable, so that once a
decision is made it is robust to internal noise and external
perturbations, acting as a cellular memory unit �31�.

It was experimentally shown that the toggle switch �TS�,
consisting of two genes mutually repressing each other, can
be used by cells to adopt different stable states �10,31,32�,
phenotypically distinct. Models of differentiation pathways
have been proposed using TS’s as the decision subcircuits, at
each bifurcation �33�. Interestingly, it was necessary to as-
sume multi-step processes, to explain observations not ac-
counted by the model used �33�. Such multistep processes
can be correctly modeled, for the purpose of studying the
global dynamics of the system, by time delayed reactions
�22�.

From the above, it was opted to model as GRN of each
cell, a TS. Although most GRNs differentiation subcircuits in
real cells are, most likely, more complex than the two gene
network assumed here, there are experimentally confirmed
gene circuits of differentiation that consist of very few genes
and are bistable, whose choice of differentiation pathway is
driven by stochastic fluctuations in gene expression
�10,11,34,35�.

Additionally, only sequential induction is considered be-
tween neighbor cells, by which a cellular GRN activity
might affect its neighbor cells through its products of gene
expression. Communication between nearest neighbor cells
is done by the exchange of proteins. This is a simplification
of the far more complex mechanisms used by real cells. For
example, signaling proteins in the membrane have to be ac-
tivated and produce signaling molecules. These can be de-
tected by specific proteins on the membrane of neighbor
cells, generating a cascade of reactions by which the signal
arrives to its destination. However, the time duration of these
mechanisms are accounted for, by modeling protein inter-
change between near neighbor cells via reactions with ran-
dom normally distributed time delays, accounting for diffu-
sion, membrane crossing, etc.

A recent work �36� focused on the dynamics of coupled
nonidentical TSs within a single cell, and on the effects of
varying binding affinities of proteins of a gene to another
gene promoter region. The coupling mechanism between TSs
differs significantly from the one assumed here, since spatial
compartmentalization was not considered.

Here the focus is on characterizing the dynamics of
bistable GRNs of individual cells within a tissue, with cell-
cell communication between nearest neighbors. Since real
GRNs dynamics are inherently stochastic and the time dura-
tion of processes such as gene expression are not negligible,
each cell GRN dynamics is driven by the delayed SSA. The
tissue is modeled as a two-dimensional regular square lattice
with periodic boundary conditions, where each node of the
lattice is a single compartmentalized cell. Each cell contains
a single TS and, for simplicity, it is assumed that the TS
dynamics is independent of the rest of the cell GRN dynam-
ics �which thereby is not considered�. It is studied the con-
ditions necessary for the GRNs, in different cells, to synchro-

nize their toggling and to attain “stability.” As shown in the
results section, from the interactions between cells, new
states emerge, not possible for individual TSs, which can be
seen as an evidence that cells within a tissue may behave
differently than when isolated. The results are not reproduc-
ible by a delayed ODE model, shown for comparison.

Since these are stochastic models, by “stable states” it is
meant “states where genes expression levels are, aside sto-
chastic fluctuations, approximately constant in time,” and
where the toggling behavior is never observed �where a gene
protein level “on” becomes “off,” and vice versa�.

The paper is organized as follows: First, a description is
made of the “delayed SSA �21�.” Next, the set of chemical
reactions which constitute the GRN of each cell are intro-
duced and, from this, the set of chemical reactions that
model the tissue. After, definitions are given for stability,
system entropy, and coupling strength between pairs of TSs
and for the tissue of coupled TSs.

In the results section, first its measured the stability and
system entropy of two coupled cells GRNs, as their coupling
strength varies. Next, it is studied the dynamics of a tissue of
25 cells, organized as a two-dimensional square lattice of 5
�5 cells with periodic boundary conditions.

Finally, conclusions are presented regarding the interpre-
tation of results and possible biological implications.

II. MODELING STRATEGY OF TISSUES

A. Multiple delayed stochastic simulation algorithm

In the SSA �16�, products of a reaction are released im-
mediately after the reaction occurred. However, unlike
simple bimolecular chemical reactions, gene expression is a
highly complex chemical process that involves many reac-
tants and sequential reactions. The set of reactions necessary
for a gene to be transcribed by one RNA polymerase,
spliced, translated by a Ribosome and folded, can be simpli-
fied �21�, for our purposes, into a single step multidelayed
reaction. This method of delaying the release of gene expres-
sion products by a time interval proved to be more accurate
than those assuming instantaneous gene expression �21,23�.

GRNs are modeled here by the methodology proposed in
�28�, with SGN Sim “stochastic gene networks simulator” �27�
that allows modeling transcription and translation as single
step multiple time delayed reactions �21�.

The “delayed SSA �21�,” unlike the nondelayed SSA, uses
a waiting list to store delayed output events. The waitlist
consists of a list of elements �e.g., proteins being produced�,
each to be released after a certain time interval �such time
duration is set when they are placed on the waitlist�. The
algorithm proceeds as follows.

�1� Set t←0, tstop← stop time, read initial number of mol-
ecules and reactions, create empty wait list L for delayed
generating events.

�2� Do an SSA step for reacting events to get next reacting
event R1 and corresponding occurrence time t+ t1.

�3� Compare t1 with least time in L, tmin. If t1� tmin or L is
empty, set t← t+ t1. Update number of molecules by per-
forming R1, adding to L delayed products �if existing� and
the time they have to stay in L from appropriate distribution.
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�4� If L is not empty and if t1� tmin, set t← t+ tmin. Update
number of molecules and L, by releasing the first element in
L; otherwise go to step �5�.

�5� If t� tstop, go to step �2�; otherwise stop.
The use of a delayed reactions model to drive the dynam-

ics of GRNs models has been proven necessary at a detailed
level �23�, specially under complex conditions, e.g., in GRNs
with feedback loops �21�. Recently, a detailed comparison
between modeling strategies was made, studying at a de-
tailed level models of single gene expression, a single TS
and the repressilator �23�. Many relevant differences were
found, when using different modeling strategies such as
Boolean networks, coupled ODEs, and nondelayed stochas-
tic models. For example, the delayed SSA was the only that
reproduced results of a recent experiment where gene expres-
sion was measured at the single proteins level �24�.

When a chemical system has many molecules of all inter-
vening chemical species its dynamics, i.e., the variation of
the concentrations of the chemical species present, can be, in
simple cases, computed approximately using ODE’s. These
models are either deterministic or include some noise term,
white or colored. In the GRN model here used, proposed in
�28�, genes are treated as chemical species since in real
GRNs they exist only in very small quantities. Since pro-
moter regions are also subject to time delays �21�, stochastic
effects cannot be ignored. Therefore, a “mean field” ap-
proach is not accurate. Additionally, until now, attempts to
simulate noise using Langevin equations were not very suc-
cessful �37�. Finally, it remains to be shown that noise terms
in ODE models capture the true nature of noise in gene ex-
pression.

Since the models simulated here have coupled GRNs and
feedback loops, it is necessary to use the delayed SSA to
drive the dynamics, to obtain solutions as realistic as pos-
sible. A similar conclusion about the necessity of using the
SSA to model GRNs was obtained in another work, related
to the study of the dynamics of TSs �38�, even when the
systems have large number of molecules.

B. Model of the toggle switch

A TS consists of two genes repressing each other. The
model used here �Eqs. �1�–�4�� does not include cooperative
binding, where repression of promoters would be by dim-
mers of proteins, or self-activation reactions, where a gene
resulting proteins would act as activators of its own expres-
sion. These two reactions are usually introduced in models to
obtain toggling dynamics �23,33,38�, however it was re-
cently shown that introducing realistic time delays in
transcription-translation �39� is sufficient to obtain robust
flipping between two states for a wide range of parameters
values �36�, in agreement with experimental observations
�31�. Also, this model is less demanding computationally
than models requiring dimmers, by reducing the number of
reactions necessary, allowing the simulation of larger lat-
tices.

The set of reactions that define a TS are the following. Let
z, z1, z2=1 ,2 and z1�z2:

RNAp + PROz ——→
ktz

PROz��z
1� + RNAp��z

2� + pz��z
3� ,

�1�

PROz1
+ pz2

�
ku�z1,z2�

kc�z1,z2�

PROz1
pz2

, �2�

PROz1
pz2

——→
kdpz1

PROz1
, �3�

pz ——→
kdz

� . �4�

Reaction �1� models the transcription-translation process
in a single step, accounting for the time each of the products
takes on average �21� to be released, once the reaction is
initiated. Such delays can be constant or drawn from distri-
butions each time the reaction occurs �27�. The �’s represent
the extent of time for a product to be released in the system
after the reaction occurred. The �’s superscripts distinguish
delays between products of the same reaction, while sub-
scripts distinguish the delays of products of reactions associ-
ated to different genes.

For example, if reaction �1� occurs for gene 1, at time t,
promoter of gene 1 �PRO1� and one RNA polymerase
�RNAp� are removed from the system and placed in a wait-
ing list �along with the � of each of them�. PRO1 is released
at t+�1

1, the RNAp is released �unchanged� at t+�1
2 and pro-

tein p1 is released at t+�1
3 from the waiting list, becoming

available for future reactions �21,28�. Unless time delays �’s
are explicitly represented in the products, all events, reac-
tants depletion and products appearance, occur instanta-
neously at t.

The time delay for the promoter clearance affects the sys-
tem dynamics significantly, by limiting the number of
RNAp’s that can transcribe the gene simultaneously �in
agreement with experimental observations �39�� and it can-
not be repressed while on the waiting list. This delay is nec-
essary for a TS without cooperative binding or a self-
activation mechanism to toggle �36�. Also, given the nature
of transcription-translation processes to model it as a single
step event, one always sets �z

1��z
2��z

3.
Reaction �2� controls the repression strength between the

two genes of the TS, by setting the propensity �16� for re-
pressors to bind and unbind to the promoters. When bound,
they form a complex �PROz1

pz2
� that is unable to express,

since the RNAp cannot bind to it.
Reactions �3� and �4� are responsible for protein decay.

Reaction �3� allows the protein to decay when bound to the
promoter. Without this reaction, binding to the promoter
would act as a “protection” against decay and affect the dy-
namics significantly, specially in regimes with small number
of molecules. This reaction also affects, indirectly, the re-
pression “strength.” For example, given high decay, repres-
sion becomes weak, since the repressor protein only remains
repressing for very short time intervals.

As an example, the dynamics of a TS was simulated for
5�106 s, with a sampling frequency of 50 s. The system
was initialized with 100 RNAp’s, one promoter of each gene
and no proteins. The rate constants are set at kt=0.05 s−1,
kd=kdp=0.001 s−1, kc=0.1 s−1, and ku=0.001 s−1. Time de-
lays depend mostly on gene length and RNAp transcription
speed, which can vary significantly from gene to gene and
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also vary from one event to the next �39�. We set �1=1 s,
�2=20 s, and �3=100 s. The time duration of the simulation
was set to allow observing a few toggles.

The resulting time series in Fig. 1 shows that the TS
toggles from a state where p1� p2 to the opposite, and vice
versa. The delay of the promoters, limiting production, com-
bined to the decay rate, causes no protein increasing in quan-
tity above 1000.

C. Model of a square lattice tissue

Cells in tissues can spatially organize themselves in a va-
riety of ways. Two extreme spatial structures are “connective
tissues,” with sparsely distributed cells and most space is
occupied by extracellular matrix, and “epithelial tissues,”
with tightly bound cells by cell-cell adhesion, forming com-
pact structures, and only a small fraction of the space is
occupied by the extracellular matrix �1�.

Here, its assumed a compartmentalized space organized in
a 2D. regular square lattice structure of compartments with
periodic boundary conditions. Each compartment contains
one cell and has four neighbor cells. All cells of the tissue are
identical. Due to the spatial structure imposed, the model is
more similar to epithelial tissues rather than connective ones.

The coupling between GRNs is obtained by proteins in
one cell diffusing to near neighbor cells. In real cells, this is
very unlikely to occur in such a simple way. Usually, pro-
teins do not diffuse through the cell membrane. The way
proteins in one cell affect another cell is by binding to some
membrane receptor which reacts, producing corresponding
signaling molecules that will be detected by membrane re-
ceptors of another cell. This receptor will then produce sig-
naling molecules which either interact directly with this cell
GRN or activate a signaling pathway that can eventually
interact with the GRN �1�.

In the present work, the relevant feature of this complex
chemical pathway is the time it takes for a signal to go from
one cell to the next one. This time duration varies from one
signal to the next one, following some distribution, here as-
sumed to be a normal distribution. Thereby, to make the

model as computationally simple as possible, it is here as-
sumed that proteins can go from one cell to a next near
neighbor one, via uni-molecular reactions with normally dis-
tributed time delays.

Thus, in the reactions responsible for the diffusion of pro-
teins between cells, two parameters are relevant. The reac-
tion rate constant defines the average time it takes for a pro-
tein to find a signaling molecule in the membrane. Once this
event occurs, it is assumed that the signal will always reach
the other cell. The time delay of the reactions modeling this
process accounts for its time length and is randomly gener-
ated from a normal distribution. The mean and standard de-
viation of the distribution are set to small values, when com-
pared to the delays of transcription-translation processes,
assuming therefore that neighbor cells are spatially close to
one another.

In general, since the reaction modeling the movement of a
protein pi, from a cell to a nearest neighbor cell, is unimo-
lecular, under the formalism of the SSA �16,17�, its propen-
sity depends only on the number of pi in the first cell and the
rate constant of the reaction �kcross�.

To describe the tissue constituents and reactions, the fol-
lowing notation was adopted: each compartment in the lat-
tice is identified with the indexes i , j �row and column�.
Given that the lattice has n2 cells, then i , j=1, . . . ,n. These
two indexes are assigned to each chemical element, i.e., pro-
teins, promoters and so on, indicating in which compartment
they are at any moment in time. Gene promoters �PRO� and
proteins �p� need an extra index, z=1,2, depending on which
gene of the TS they correspond to �either type “1” or “2”�.
Proteins of the same type are assumed indistinguishable
within one compartment, independently of their origin. The
chemical reactions occurring in the tissue are

RNApi,j + PROi,j
z ——→

kti,j
z

PROi,j
z ��i,j

z,1� + RNApi,j��i,j
z,2�

+ pi,j
z ��i,j

z,3� , �5�

PROi,j
z1 + pi,j

z2 �
ku��i,j,z1�,�i,j,z2��

kc��i,j,z1�,�i,j,z2��

PROi,jz1pi,j
z2 , �6�

PROi,j
z1pi,j

z2 ——→
kdp��i,j,z1�,�i,j,z2��

PROi,j
z1 , �7�

pi,j
z ——→

kd�i,j,z�

� , �8�

pi1,j1
z ——→

kcross�ci1,j1
,ci2,j2

�

pi2,j2
z �N:�cross,�� . �9�

Reaction �5� models genes transcription and translation
processes in a single multiple delayed reaction �21�. Reac-
tions �6� �two reversible reactions� represent the interactions
between proteins and the two genes inside each cell and this
particular topology is known as a TS. The only restriction on
indexes is z1�z2: z1 ,z2=1 ,2. Reactions �7� and �8� are re-
sponsible for protein decay, regardless of which compart-
ment they are in. Reaction �9� regulates the coupling be-
tween nearest neighbor cells and it is a random delayed

FIG. 1. Time series of the number of proteins of each gene of
one TS with multiple time delayed transcription-translation, no co-
operative binding, and no self-activation reactions.
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reaction, whose delay, each time the reaction occurs, is
drawn from a normal distribution with a mean of �cross and a
standard deviation �. This delay accounts for the time this
event needs to be finished, once the reaction has been se-
lected to occur by the SSA. Notice that the RNAp is also
assigned a location in the cell. It is assumed that this mol-
ecule, like the promoters, cannot travel between cells. To
define a 2D regular square lattice �such as the one partially
represented in Fig. 2�, the following restrictions are imposed
the indexes values choice for reaction �9�: ∀i1 , i2 , j1 , j2
=1 , . . . ,N; ∀z=1,2 :z1�z2 and i1= i2±1∧ j1= j2 or i1
= i2∧ j1= j2±1.

Next, the quantities used to characterize the system struc-
ture and dynamics are introduced.

D. Measure of coupling strength between cells

The coupling strength �C� between two cells intends to
measure the expected fraction of time that the two cells will
be interacting by the coupling reactions, during an experi-
ment. Reaction �9� is one that directly affects C. The higher
is this reaction rate constant �kcross� the stronger is the cou-
pling since, as it increases, a higher fraction of the existing
proteins in the system will be, on average, moving between
cells at any moment.

The rate constant of transcription-translation reaction �kt�
of the gene subject to repression also has to be considered,
since this reaction competes with the repression reaction, due
to the non-null delay of the promoter release after each
trancription-translation reaction. Assuming that enough
RNAp molecules exist, so that this molecule is not a limiting
factor of transcription, the higher the rate constant of
transcription-translation �or the longer is the delay on the
promoter�, the less time the promoter available for being
repressed.

If two genes with promoter Proi1,j1
z1 and Proi2,j2

z2 are in two
nearest neighbor cells, and z1�z2. Given the rate constant of
transcription-translation �kti1,j1

z1 � of gene 1 of cell i1, j1, and

kcross�ci2,j2
,ci1,j1

�, the rate constant of the reaction by which
proteins from cell �i2 , j2� can go to cell �i1 , j1�, the C of
�i2 , j2� on �i1 , j1� is defined as

C =
kcross�ci2,j2

,ci1,j1
�

kti1,j1

z1
. �10�

One can generalize this definition for a lattice with any
topology, where any two nearest neighbor cells can have a
unique C. Here, 2D square lattices with periodic boundary
conditions are modeled such that all transcription-translation
and crossing reactions are identical; thus C is the same for all
pairs of nearest neighbor cells.

It should be noted that the time delays in transcription
limit the gene production rate of proteins, not accounted by
kt alone. The reactions responsible for crossing also have
delays not accounted for, in the formula defining C. These
parameters also have be considered when characterizing the
lattice structure. Nevertheless, as shown in the results sec-
tion, this quantity C, as defined, can be directly related to the
dynamical behaviors observed, here characterized by the tis-
sue stability and entropy.

E. Measure of stability

To measure the ability of a GRN to “hold state” after a
transient �a single state out of the possible ones�, a stability
measure �S� is introduced. It is here interpreted that the less
a TS toggles between its two states in a time interval, the
more stable it is, given that toggling corresponds to either p1
becoming clearly larger in quantity than p2, or vice versa.

The state of the TS can be characterized, for the present
purposes and under the constraints of GRNs topology, by the
following relations between p1 and p2: Both null or near null,
both large, or, one much larger than the other. Given a time
series �t seconds long, the stability of a TS in cell �i , j� that
toggled ti,j times during that time interval, is defined by

Si,j =
�t

ti,j + 1
. �11�

The dependence on �t allows recognizing differences in
S, in experiments with different durations. The only differ-
ence between S and the period of toggling is that a system
that does not toggle has infinite period, while S will be equal
to the total time �t. The stability of the tissue is the average
of the Si,j for each TS. Supposing a lattice of n2 cells, where
in a given a time interval �t, each TS toggled t1,1 , . . . tn,n
times, respectively, one has

S =
n2�t

�
i,j=1

n

�ti,j� + 1

. �12�

Using this definition prevents having infinite S for a set of
TS’s when one or more TSs do not toggle. Notice that un-
coupled TSs will not have null S. Each TS has an inherent
stability, since it does not toggle infinitely fast.

This quantity can be used to compare the stability of
single TS’s within a tissue or, using Eq. �12�, to compare the

FIG. 2. A tissue modeled as a 2D square lattice of coupled of
TS’s. Only one cell and all its interactions with nearest neighbors
are represented. Reactions allowing periodic boundary conditions
are not represented.
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average S of distinct tissues composed of TS’s coupled with
different strengths. Unfortunately, knowing S does not distin-
guish in what stable state the system is, and thus, it cannot
detect transitions from one stable state to another. To do that,
one must observe directly the time series of gene expression.

The measure of S, as shown in the results section, detects
transitions from regimes where the TSs toggle, to regimes
where they are stable, and vice versa.

Another measure must be introduced, to detect transitions
between other dynamical regimes, also observed when vary-
ing C. Next, we introduce the measure used to detect syn-
chrony between TSs within the same tissue.

F. Measure of synchrony

Using the model of a single TS previously described, for
certain values of C the TSs will be toggling �see results
section�. The toggling is caused by stochastic fluctuations in
proteins concentrations and, for that reason, the moment at
which any toggling occurs is random. However, as the cou-
pling between next near neighbors increases from null, the
toggling in one TS drives its neighbors to also toggle syn-
chronously, within the sampling frequency of the system
state.

The stability measure, S, detects if any TS of the tissue is
toggling and quantifies how frequent is that toggling. Thus it
can be used to distinguish if a system of coupled TSs is
stable �fixed in one state� or toggling. However, this measure
does not detect if the TSs of the tissue are toggling synchro-
nously or not.

It has been shown that the measure of synchrony to be
applied in a given case cannot be chosen according to fixed
criteria, but rather it should be chosen in each case the mea-
sure yielding the most plausible results �40�. To measure syn-
chrony between cells the following definition is assumed:
Two cells time series are synchronous at a given moment t if
they are in the same state.

Synchrony is measured here by the information-
theoretical entropy of the 2-tuple �p1 , p2� among the cellular
population. The state of a cell i at moment t, Sti�t�, is defined
as follows: If p1	 p2 the cell is in state “1,” otherwise it is in
state “0.” The state of a tissue, Sttissue, is defined as the set of
states of all its cells. Let P0, at a given moment t, be the
fraction of cells in state 0 and P1 the fraction of cells at state
1. Then, the entropy of the tissue state, at any given moment
t, is defined as �41�

Htissue�t� = − P0�t�log2„P0�t�… − P1�t�log2„P1�t�… . �13�

Given the definition in Eq. �13�, Htissue�t� is null if all cells
are, at t, in the same state. The maximum Htissue�t� is equal to
1 and occurs when 50% of cells are in one state and the other
50% are in the opposite state.

Finally, the “tissue entropy” of one simulation is defined
as the average entropy of all time moments:

Htissue =

�
i=1

i=T

Htissue�i�

T
. �14�

When computing the H of the time series of a given simu-
lation, the initial transient is not discarded since its duration
varies from simulation to simulation, and because for some
values of C this transient is extremely long �and infinitely
long for C	5� and, thus, should be considered. Notice that
this measure is not able to distinguish if the tissue is stable or
fully synchronous �this distinction is done by observing the
value of S�.

III. RESULTS

The stability and synchronization of cells within a tissue
are studied as a function of C between nearest neighbor cells.
The tissue is modeled as a 2D square lattice structure with
periodic boundary conditions and described by reactions
�5�–�9�.

In all cases, the following parameters values are used un-
less stated otherwise. At the beginning of each independent
simulation, all proteins are initialized at 0 and all promoters
are free to express. The RNAp’s are assigned a location in
the lattice and cannot travel between cells. The number of
RNAp’s is 50 per gene �thus, 100 for the two genes in each
cell�, in agreement with experimental observations �39�.
Consequently, given the delays in the transcription-
translation reaction, the average number of available RNAp’s
is �30 per gene, thus not limiting transcription due to deple-
tion. The volume of each cell is assumed to be equal to 1.

The delays in the transcription-translation reactions are
set at �1=1 s, �2=20 s, and �3=100 s. The delay in reaction
�9� is randomly generated each time the reaction is chosen to
occur, and follows a gaussian distribution of mean 10 s and
standard deviation 5 s. The reactions rate constants are equal
for all cells and set at kt=0.1 s−1, kd=kdp=0.001 s−1, ku
=0.001 s−1, and kc=0.1 s−1.

Only kcross or kt are varied to attain a desired C value. For
each value of C, 100 independent experiments are made,
with each experiment lasting �t=107 s. The system state is
sampled uniformly each 50 s. The rate constants are in s−1

units since they are stochastic rate constants, i.e., frequencies
independent of the concentrations �16�. A detailed justifica-
tion of the values chosen for the rate constants and delays
�except those related to diffusion reactions� can be found in
Ref. �21�.

In this section, figures of gene expression time series re-
sult from single runs and are shown as examples. In the
graphs of H and S vs C, the average results of 100 indepen-
dent experiments, for each data point, are shown.

A. Coupling two cells

A system of two coupled cells is modeled, driven by re-
actions 5 to 9, to observe in detail the effects of varying C in
the dynamics. First, kcross is varied while kt=0.1 s−1 and kept
constant, to show that, the higher kcross is, the more stable the
system becomes. Next, the system dynamics is observed for
the same C values as in the first case, but C is varied by
decreasing kt, for constant kcross.

As the results show �Fig. 3�, the two methods of varying
C have an equivalent effect on S, for each C value.
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As seen in Fig. 3, the two curves are similar, validating
the formula to compute C. Yet, one needs a slightly larger C
when varying kt to obtain the same results as when varying
kcross. The small difference is due to the delays in the
transcription-translation reaction. While substances, such as
RNAp and promoters, are on the waitlist, they do not con-
tribute to reactions propensity. The formula for C assumes
instantaneous reactions and thus, the more and larger delays
this reaction has, the less accurate is the dynamics predict-
ability by knowing the C value.

The system exhibits the following dynamical behaviors as
C increases: �i� for 0�C�10−3 the cells toggle asynchro-
nously; �ii� for 10−3�C�0.5 the two TSs toggle synchro-
nously; �iii� for 0.5�C�5 the two cells are stable in the
same stable state; �iv� and for C	5 all genes of both cells
are expressed �a state not attainable by a single TS without
coupling to other TS�.

Figure 4 shows, as C varies, the average H between the
two cells. The value of H exhibits a good agreement with the
mentioned dynamical regimes. Namely, it confirms the tran-
sitions between asynchronous to synchronous �seen by the
significant decrease of H�, and from the stable state to the
“infinite transient” state �seen by the significant increase of
H�. For the C values at which the system is either synchro-
nous or stable, H is very low �H is never absolutely null due
to the initial transient�. For the C values at which the system
is asynchronous or when all genes are expressed, H is high
as expected. The first case is due to the asynchrony between
cells, while in the second case H is high due to all proteins
being expressed more or less equally �and which is higher is
always changing� never settling in one of the two states.

In transition regions between behaviors, the result varies
for independent runs. For example, if C=0.5 one can observe
in one experiment a stable state, while in the next a single
synchronous toggling. Continuing the example, although in
most experiments with C=0.6 one observes a stable behav-
ior, in a few experiments one still observes one toggle, while

for C=0.8 all experiments showed completely stable behav-
ior. Thus the system behavior for a given C value is here
characterized based on the most commonly observed behav-
ior.

The phase transition in both cells dynamics from synchro-
nous oscillations to stable states as C increases is visible in
Fig. 3, at C�0.5. Not visible is the transition at C�5, from
stable with one gene per cell expressing, to the stable with
both genes of both cells expressing.

The transient in the regimes of toggling behavior or stable
states where only one gene of each cell is expressing �either
both genes “1” or both genes “2” of each TS� is independent
of the C value �for C�1� and has a mean of �10 000 s with
a standard deviation of �5000 s.

For C	1 the transient increases rapidly with C increase
and, for C�5, becomes infinite. By infinite one means that
in the 100 experiments for each C value, which for C�5 it
ran for 108 s, the system did not leave the state with all genes
expressing.

This is caused by the diffusion reaction which is now very
fast when compared to any other reaction rate of occurrence,
due to its high rate constant, and especially in comparison
with kt. Therefore, most proteins are diffusing at any given
moment. Since this reaction is time delayed, while diffusing
between cells, proteins do not affect cells states.

The stochastic fluctuations, the mechanism by which dif-
ferences between the two proteins quantities of a TS are
created, are not sufficiently fast when compared to the rate of
diffusion for this value of C. Small fluctuations in any of the
cells are first “passed on” into the waitlist �here representing
the inter cellular media�. Since fluctuations equally likely
increase either p1 or p2, on average, fluctuations will com-
pensate one another and the amounts of p1 and p2 remain
approximately equal in the waitlist.

Thus none of the genes in any cell is able to decisively
“overcome” the other in protein concentration, since when a
small difference between p1 and p2 quantities arises in a cell,
it is “dissipated” by the fast diffusion to neighbor cells,

FIG. 3. Average stability S vs coupling strength C �in log scale�.
C is varied by varying kcross with kt fixed and vice versa. Each data
point is an average of 100 experiments. A phase transition is ob-
served in S as C increases, corresponding to the system dynamics
changing from synchronous oscillations to stable.

FIG. 4. Average H vs C �in log scale�. C is varied by varying
kcross with kt fixed. Each data point is an average of 100 experi-
ments. H is minimized in the dynamical regimes of synchronization
and stability, and the transitions from asynchronous to synchronous
and from stable to infinite transient are easily detected from corre-
spondent variations in H.
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which works towards spreading evenly any differential in
proteins quantities by the two cells.

Examples are shown of the dynamical regimes described,
in plots of the proteins time series. The notation used in the
legends is “Pi , j ,z” such that �i , j� is the cell location in the
lattice and z is either 1 or 2, depending on which of the two
proteins, p1 or p2, is representing.

In Fig. 5, the time series of proteins p2 of the two cells
�1,1� and �2,1� are plotted. The rate constant kcross is set so
that C=10−4, given kt=0.1 s−1. Accordingly, the two TS’s
toggle asynchronously. The speed at which the two cells ex-
change proteins is not sufficient to affect each other’s states
significantly.

In Fig. 6 a time series is plotted of proteins p2 of the two
cells �1,1� and �2,1�, with C=3�10−3. The two cells proteins

time series are synchronized. The coupling reactions between
them occur at a relative speed such that it gives enough time
to any of the two TSs, to stochastically “decide” for one of
the two possible states and, once that decision is made and
“stabilized,” propagate to the other cell, forcing it to adopt
the same state. Since the change of state in one cell must be
sufficiently strong to also impose a state change in the other
cell, toggling is much less frequent than in uncoupled TSs.

Figure 7 shows the time series of proteins p1 of the two
cells, �1,1� and �2,1�, of a single experiment with C=0.6. The
coupling reactions between the two cells occur at a rate such
that the two TSs, once stochastically “deciding” to settle in
one of the two possible stable states, no longer can switch to
the other state. The coupling is strong enough �i.e., occurs at
high frequency� so that no TSs can stochastically toggle suf-
ficiently fast enough to “escape” the coupling, and so the
system remains stably in the same state, after the initial tran-
sient.

In Fig. 8 it is plotted, from one experiment, the time series
of proteins p1 and p2 of the two cells, �1,1� and �2,1�, with
C=10. According to the SSA formulation, the system dy-
namics is driven towards a state of local maximum entropy
�homogenous distribution of proteins by the two compart-
ments in this case�. The speed at which it does so is deter-
mined by the rate constants. In this case, the reactions re-
sponsible for diffusion between the two cells have such a
high rate constant that the system never reaches a state where
one protein overcomes the other. Most proteins will be on the
waitlist, moving from one cell to other, and the two cells will
have always almost the same amount of proteins p1 and p2
for an indefinite amount of time, for reasons previously
described.

In the previous examples, with lower C, stochastic fluc-
tuations created differences between the two proteins con-
centrations in one of the cells. Such differences were suffi-
cient to allow one of the genes to become repressed and the
other “active.” The differential between the two proteins pro-

FIG. 5. Two coupled cells: C=10−4. The two cells GRNs toggle
asynchronously. Only the time series of p2 of both cells are plotted,
for easier visualization �p �1 �1 �2 is p2 of cell �1,1� and p �2 �1 �2 is
p2 of cell �2,1��. Notice, e.g., for �500 000 s� t� �900 000 s the
two cells GRNs are in opposite states.

FIG. 6. Two coupled cells: C=0.003. The two cells GRNs
toggle synchronously �almost identical time series�, but less fre-
quently then when not coupled. Only the time series of proteins p2

of both cells are plotted for easier visualization �p �1 �1 �2 is p2 of
cell �1,1� and p �2 �1 �2 is p2 of cell �2,1��. Notice the synchronized
toggling at �700 000 s of both cells from the state where p2� p1 to
the state p1� p2.

FIG. 7. Two coupled cells: C=0.6. Only the time series of pro-
teins p1 of both cells are plotted, for easier visualization �p �1 �1 �1
is p1 of cell �1,1� and p �2 �1 �1 is p1 of cell �2,1��. The two cells
GRNs attain a state that, due to the speed of proteins exchange
between them, becomes stable. Once p1� p2 in both cells, no tog-
gling is observed.
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duction in that cell would then propagate to the neighbor cell
and impose the same state there.

In the case of Fig. 8, the relation between the time it takes
for one cell to attain one of the two states �p1� p2 or vice
versa� and the time it takes for diffusion to neighbor cells to
occur “inverts” comparing to the previous cases. Diffusion is
now faster than the time it takes for stochastic fluctuations to
impose one of the two states. The two cells exchange pro-
teins so fast that any small difference between the two pro-
teins quantities in one cell is rapidly “dissipated” to the other
cell. The fluctuations in the two cells will be in both possible
directions �p1 larger 50% of the times and p2 larger in the
other 50% of the times� and thus, compensate each other.
This leads to a stable “infinite transient,” where all genes of
both cells express and, for that reason, the system never
settles in one of the stable states possible for lower C values.
In this case it was observed on average 2000 proteins �p1 and
p2� in the waiting list, diffusing at each moment, meaning
that there are as many proteins in the system at any moment
as for smaller C values, and they are only not “visible” in the
time series plots because the majority is on the waitlist at all
times. For this reason, genes states are considered “on,” in
this state.

B. 5Ã5 square lattice cells tissue with periodic
boundary conditions

In this section, the results for a 5�5 square lattice with
periodic boundary conditions are presented. Each cell has
four nearest neighbors with whom exchange of proteins can
occur.

The system has the following dynamical behaviors as C
increased: �i� For 0�C�10−7 the cells toggle asynchro-
nously; �ii� for 10−7�C�10−6 nearest neighbor cells syn-

chronize resulting in synchronization by regions of space;
�iii� for 10−6�C�10−5 all cells of the tissue toggle synchro-
nously; �iv� for 10−5�C�10−3 all cells becomes stable in
the same stable state; �v� for 10−3�C�10−2 all cells be-
comes stable, but only after a long transient whose duration
increases with C increase; �vi� for C	0.01, all genes of all
cells express, corresponding to an infinitely long transient.

Figure 9 shows the measured stability S, averaged over all
cells and 100 independent experiments per data point. S goes
through a phase transition, from synchronized toggling to
stable, at C�5.10−6. Note that C is the C value between any
two cells of the lattice. Since each cell has four nearest
neighbors, the phase transition occurs for smaller C values
than in the previous case �previously each cell had only one
neighbor�, shown in Fig. 2.

Figure 10 shows the average H of the tissue, as C varies.
H varies according to the transitions from asynchronous to
synchronous, and from stable state to infinite transient state
�similar to those observed for the two cells’ system�. As be-
fore, H is very low when the cells are synchronous or stable.

FIG. 8. Two coupled cells: C=10. Proteins p1 and p2 time series
are plotted. The two cells exchange proteins so fast toward homog-
enous distribution by the two compartments that a stochastically
created difference in proteins quantities in one cell is rapidly “dis-
sipated” to the other cell. The system remains in a stable “infinite
transient” where all genes of both cells express, and never settles in
one of the stable states possible for lower C values. On average,
2000 proteins are on the waitlist, diffusing at each moment.

FIG. 9. S vs C �linear-log plot� of a 5�5 square lattice with
periodic boundary conditions. S is the average stability of all cells
and for 100 experiments per data point.

FIG. 10. Average H vs C �lin-log scale�. C is varied by varying
kcross with kt fixed. Each data point is an average of 100 experi-
ments. H is smaller in the dynamical regimes of synchronization
and stability. Transitions from asynchronous to synchronous and
from stable to infinite transient are the cause of the large variations
of H.
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Notice that the values of H are lower, for the same C values,
than in the two cells case. Synchronization and stability are
“stronger” in the 5�5 lattice, since each cell has 4 neighbors
forcing these states on each cell. H is never null, due to the
initial transient.

Figure 11 show the system time series for a case where
synchronization by regions occurred, for C=8�10−7. From
the time series of one of the proteins within three cells of the
lattice, it is visible that only two of those protein levels of
different cells are synchronized. Namely, the time series of
proteins p2 of cells �5,4� and p1 of �5,5�, which are nearest
neighbors, show that these two cells toggle synchronously.
On the other hand, the time series of p1 in cell �2,1� shows
that this cell GRN is not toggling synchronously with the
previous two. Yet, it is synchronized with some of its nearest
neighbors �not show�. This regime where synchronization by
regions of space occurs is highly “unstable,” i.e., occurs for a
very small range of C values, and only in some experiments,
due to the small size of the lattice.

Figure 12 shows a time series of proteins p1 of cells �1,1�
and �1,2�, as examples, when coupling the cells strongly
�C=0.01�. All proteins p1 on the lattice have similar time
series and all p2 levels are almost null most of the time, after
the initial transient. The strong coupling makes toggling im-
possible for any of the cells, once a stable state is attained.
Any stochastic fluctuation of the proteins concentration in
one of the cells of the tissue, that could lead to such toggling,
is “counterbalanced” by the neighbor cells �through diffusion
of proteins between cells� faster than the necessary time to
make its two genes toggle. All the cells are “acting” towards
stabilizing all other cells in the same state. The long transient
of �150 000 s duration is dependent on C. It increases as C
increases �within the interval 10−3�C�10−2�. Notice that a
single TS cannot attain this stable state �with the model of TS

here used�. This dynamical regime emerges from the cou-
pling between two or more TS’s.

Figure 13 shows the time series of both proteins �p1 and
p2� of cells �5,5� and �3,3�. In this case, C=0.1. The dynam-
ics in all cells of the lattice is similar to these two cells,
shown as examples. All proteins are being produced and no
protein level becomes much higher than the other in any cell.
Because C is so high, since the tissue has symmetric crossing
reactions between any two cells and, since the SSA dynamics
drives the system to a local maximum of entropy, the pro-
teins are being constantly spread evenly through all cells �as
in the example in Fig. 8�. If in one cell one of the proteins,
due to stochastic fluctuations, starts to overcome the other in
quantity, the lack of balance on that cell is spread by distrib-
uting the proteins evenly trough all the cells in the tissue.

FIG. 11. Example of synchronization by regions in space, C
=8�10−7, on a 5�5 square lattice. Time series of one protein of
three cells. p2 in cell �1,1� becomes “on” much before the other two
proteins levels represented. The time series of these two other pro-
teins �p1 in �5,5� and p2 in �5,4��, of nearest neighbor cells, are
synchronous. Around 400 000 s, p2 in cell �5,4� toggles to null and
its nearest neighbor �p1 in �5,5�� toggles accordingly to “on,” but p1

of cell �2,1� does not change in agreement, due to its distance in the
lattice from the other two cells.

FIG. 12. Example, for C=0.01 s−1 on the 5�5 lattice, of a long
synchronized transient until reaching one of two possible stable
states. Proteins p1 of cells �1,1� and �1,2� are shown as example. All
cells behave similarly. The two time series are almost identical. The
TS’s do not toggle due to the strong interactions between cells.

FIG. 13. Example, on a 5�5 square lattice, C=0.1 s−1, of a
stable state with both genes of each cell expressing. The infinite
transient emerges from the delayed coupling reactions and is not a
possible stable state for single TSs. Proteins p1 and p2 from cells
�5,5� and �3,3� are shown as example. All proteins have similar time
series. On average, �25 000 proteins are on the waitlist
��500 proteins of each kind�, diffusing at each moment.
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Future fluctuations in the opposite direction compensate the
small differentials and force, as well, a system state where
both proteins exist in the same quantity.

As previously noted, while on the waitlist diffusing be-
tween cells, these proteins cannot cause gene repression,
while stochastic fluctuations, which can occur equally likely
towards increasing p1 and p2 quantities, do not create a suf-
ficiently high difference between these two proteins concen-
trations to decisively settle into one the the two stable states.
Therefore, the dynamics observed in the initial transient in
the previous cases, i.e., all genes simultaneously expressing
is, for C	0.01, kept indefinitely in the 5�5 square lattice.
This dynamical behavior is not possible for a single un-
coupled TS �36�.

In the previous example �Fig. 12�, exchange of proteins
between cells is not fast enough to avoid the appearance of
differences in the two proteins concentrations in some cells,
caused by small fluctuations, that eventually result in reach-
ing one stable stable. Once reached, the flux is sufficiently
fast to sustain that state indefinitely �since change of state
requires a “long lasting” fluctuation�.

It is noted that, in Figs. 7 and 12, genes considered “on”
have proteins’ levels of �800. In Fig. 13 such amount of
proteins is not visible. The reason why all genes are also
considered in a “on” state is the same mentioned for the case
in Fig. 8. Most proteins are moving between cells at any
given moment and, thus, are on the waitlist, since the reac-
tion responsible for proteins diffusion between cells is a de-
layed reaction, not showing on the time series. For the spe-
cific case of the simulation shown in Fig. 13, after an initial
transient of around �5000 s, at any moment of the simula-
tion, on average, there are �25 000 proteins on the waitlist
��500 proteins of each kind are present in the waitlist�.

Another simulation was made �data not shown� setting
C=0.1, but with different initial concentrations, i.e., p1 of
cell �1,1� was initiated with non-null quantities �all other
proteins are null at t=0 s�. If p1�t=0��1000, the behavior
does not change in comparison to starting with null quantity
of proteins. However, starting with p1	1000 in any given
cell, these are immediately spread through all cells and, since
this quantity is sufficient to have a relevant differential be-
tween p1 and p2 in all 25 cells, the system remains stable in
the state where all cells only express p1, with p2 kept indefi-
nitely repressed.

Finally, it was tested if increasing the number of cells
causes changes in the observed dynamics. A 10�10 square
lattice with periodic boundary conditions was simulated
�data not shown�. Aside from the fact that the behavior “syn-
chronization by regions of space” becomes more easily at-
tainable within a larger range of values of C than in the 5
�5 tissue, no significant change was observed, compared to
what has been described.

C. Comparing the dynamics with a delayed
deterministic model

A study on the dynamics of TSs �38� showed that, without
cooperative binding, a TS can only toggle if there are self-
activation reactions for each gene and, importantly, if the

system is inherently stochastic. Additionally, it was shown
that ODE models could not reproduce the results obtained by
stochastic methods, even in the regime of high proteins con-
centration �38�. The model used did not include time delays
related to transcription-translation.

A subsequent work �36� showed, using a stochastic frame-
work, that introducing realistic time delays in transcription-
translation reactions, for proteins and promoters release is
sufficient for the TS to toggle for a wide range of parameters
values, without self activation and dimmerization reactions.

In this section, a ODE model of coupled TSs with time
delays in gene expression is simulated with dde23 function
in MatLab �42�, to allow a direct comparison of deterministic
and stochastic simulations. While the importance of time de-
lays has been established, the comparison between delayed
ODE and delayed SSA models allows determining the im-
portance of noise in the dynamics.

The model of TS used is similar to the one used in Ref.
�38�. The only addition to the latter is the introduction of
delays in gene expression, shown to be non negligible in the
dynamics of TSs �36�. The delayed ODE model of two
coupled TSs can be described as follows �Eqs. �15�–�18��:

dp1�t�
dt

=
g

1 + kp2�t − �1� + kcross
. p4�t − �2�

− dp1�t� , �15�

dp2�t�
dt

=
g

1 + kp1�t − �1� + kcross
. p3�t − �2�

− dp2�t� , �16�

dp3�t�
dt

=
g

1 + kp4�t − �1� + kcross
. p2�t − �2�

− dp3�t� , �17�

dp4�t�
dt

=
g

1 + kp3�t − �1� + kcross
. p1�t − �2�

− dp4�t� . �18�

The parameters are set to the values used in the delayed
SSA model: g=0.1 s−1, d=0.001 s−1, k=0.01 s−1, and kcross
=0 s−1. Also, �1=100 s, �2=�1+10 s �this delay includes
gene expression delay and diffusion delay�, and RNAp
=200.

First, setting RNAp=100, a single TS time series was
observed. Independently of the proteins initial quantities �in-
cluding p1�t=0��p2�t=0��, the system goes to a steady state
�p1= p2�1000�. This value corresponds approximately to the
protein level of the gene “on” in the delayed SSA version,
however the dynamics of the TS is completely different in
the two simulation methods �toggling in the delayed SSA,
stable in the delayed ODE for these parameters values�.
Thus, in agreement with previous results �38�, without sto-
chasticity the system is unable to have a switching behavior
even considering the time delay in transcription-translation.
In Fig. 14, a time series of a TS is shown as example.

Next, a delayed ODE model of two coupled TSs was
simulated, with kcross=0.01 and 200 RNAp’s. In the delayed
SSA, the two TSs would toggle synchronously since C=0.1.
Shown in Fig. 15, the result is a stable state for both TSs,
with all proteins equally expressed.
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The model was simulated for all values of C previously
tested �data not shown�. For all C values, the result is always
a stable state, similar to the one observed in Fig. 15. Once
the two proteins quantities match, they can never separate
again, since the two are equally likely to be expressed and
repressed, thus the system remains in this unstable attractor.
This shows that it is the noise in the dynamics that creates
differences between p1 and p2 quantities that generate the
toggling behavior �38�.

Finally, we tested if adding noise terms to the delayed
ODE’s would allow reproducing the results obtained by the
delayed SSA. A Gaussian noise term with a mean of 0 and
standard deviation of 1 was added to the delayed ODE model
of two coupled TSs. The result is shown in Fig. 16 and does
not match in any way the results of the delayed SSA model.
Adding a noise term creates temporary fluctuations away
from the equilibrium point, but it does not generate a tog-
gling behavior.

These results first confirm that without inherent stochas-
ticity in the dynamics, the TS will not toggle �38�. Also, it is
shown that introducing delays in the ODE model is not suf-
ficient to reproduce the results attained in the delayed SSA

model. Additionally adding white noise terms is also not suf-
ficient �38�. The results stress the necessity of modelling
GRNs dynamics using the delayed SSA to be able to, at the
same time, correctly account for the noise in the dynamics
and to be able to introduce time delays in reactions whose
time duration is non negligible.

IV. CONCLUSIONS

Cell differentiation is a process hypothesized to be driven
by small subcircuits of GRNs, which are, at least, bistable
�29�. Following this, it is natural to assume that, once decid-
ing into one of its possible final states, the circuit should
remain stable, so that the cell becomes unable to reverse the
differentiation process.

Recently, it was shown that gene expression and GRNs
dynamics are inherently stochastic, and that time delays need
to be accounted for, since transcription and translation take
non negligible time duration �21�.

Because GRNs dynamics are stochastic we asked what
mechanisms can make a GRN remain “stable,” once a dif-
ferentiation pathway choice is made. Differentiation path-
ways choices are known to depend on the cells’ spacial lo-
cation within an organism. In some cases this is due to
external gradients, while in other cases it could be due to
interactions between neighbor cells. Here, only the second
mechanism was investigated.

Modeling a tissue of cells, as a 2D square lattice with
periodic boundary conditions, where cells can exchange
products of gene expression with nearest neighbor cells, it
was investigated if cells, which individually cannot hold
state, might become stable or synchronized, due to the inter-
actions. In each cell, the GRN consists of a single a TS, a
circuit shown to be used in some cases by cells to choose
between two possible differentiation pathways, acting as the
“decision circuit” of differentiation �31,33�.

Although this GRN is rather simple, with only two genes
per cell, and most real genetic subcircuits controlling differ-
entiation may involve many genes, several examples also

FIG. 14. Time series of p1 and p2 of a single TS �delayed ODE
model�. At t=0 s, p1=1000 and p2=0.

FIG. 15. Time series of proteins p1 and p2 of two coupled TSs �
A and B�, with C=0.1 �delayed ODE model�. Initially, p1�A�=100,
p2�A�=0, p1�B�=500, and p2�B�=0.

FIG. 16. Time series of p1 and p2 of two coupled TSs �A and B�,
with C=0.1 �noisy delayed ODE model�. Initially, p1�A�=100,
p2�A�=0, p1�B�=500, and p2�B�=0.
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exist of differentiation controlled by a very small number of
genes. For example, it was recently reported that the Droso-
phila dioxin receptor Spineless �SS� is both necessary and
sufficient for the formation of the ommatidial mosaic �34�,
responsible for the fly color vision. The creation of the reti-
nal mosaic is driven by the expression level of a single gene
�spineless� during a specific stage of development. The sto-
chastic expression of SS acts as a binary switch determining
the cell’s fate �R7 or R8 cell type�, and is an example of
cells’ fate determined by a single stochastic variable �34,35�.

This case, besides being an example of differentiation
driven by a bistable GRN, shows how differentiation can, in
some cases, be stochastically driven �and thus, should be
modeled by the delayed SSA�, as the model here studied.
Similar examples have recently been reported �11�.

Because the TS can stochastically toggle between two
states, if those states correspond to different cells types, then
single cells whose differentiation is based on such mecha-
nism could, in some cases, exhibit transient and probabilistic
differentiation, which has been recently observed �11�. How-
ever, in most cases, differentiation is an irreversible process
in normal conditions and therefore, assuming the TS as a
possible “basic” circuit for differentiation, it was studied
here if this GRN could gain stability by interacting with
neighbor cells. Additionally, it is also studied if this GRN can
be used as well to synchronize cell’s GRNs dynamics.

As the coupling strength, which controls the speed at
which interactions between neighbor cells occur, was in-
creased several, several observations were made.

First, it was shown that having exchange of proteins be-
tween nearest neighbors at a slow rate, when compared to the
rate at which gene expression occurs, the cells’ proteins time
series synchronize. Biologically, the ability of cells within a
tissue to synchronize their dynamics is known to be impor-
tant to perform some functions. It was also observed that the
toggling frequency diminished in comparison to the observed
toggling frequency of individual TSs, and that the fluctua-
tions in proteins concentrations, caused by the stochastic na-
ture of the underlying dynamics, were far smaller than for
uncoupled cells. Therefore, coupling between cells can also
useful to reduce noise in GRNs dynamics. Importantly, the
rate of proteins interchanged can tune the frequency at which
the TSs toggle. Importantly, this shows how inherently sto-

chastic GRNs can synchronize their dynamics via inter-
change of proteins �or via signals activated by these pro-
teins�, which allows cells GRNs within a tissue to carry out
coordinated tasks.

Another interesting observation made is that, given the
proper coupling strength, cells can synchronize and stabilize
by regions of the space. This case shows that the coupling
mechanism is able to create tissues with cells differentiated
into different stable states �as in the experimentally observed
case of the ommatidial mosaic of Drosophila� and spatially
organized, starting with identical cells in the same initial
state �importantly, this was achieved without imposing any
external gradient�.

As cells are coupled more strongly, a stable state emerges,
where all cells GRNs stabilize in the same state. The inter-
change of proteins between cells creates a positive feedback
mechanism �where cell A enhances cell B to remain in the
same state as A is, and vice versa�, between all pairs of cells
in the lattice from which a robust stable state emerges in all
cells, not observable in single cells. The normally distributed
time delayed interchange of proteins between cells �a simpli-
fied model of interchange of signals between cells� is suffi-
cient to provide the cells within a tissue the necessary stabil-
ity, so that, for example, once they commit to differentiate
into one of the two stable states, they indefinitely remain in
that state, although each cell GRN dynamics is highly sto-
chastic. Thus coupling can be used to obtain uniform stable
differentiation in stochastic GRNs.

Finally, it was observed that the cells can be kept in an
“undifferentiated state” for as long as desired. For that, one
needs to impose �relatively� very strong coupling. In this
condition, cells interchange proteins so fast that stochastic
fluctuations are not fast enough to accumulate a difference
between the quantities of the two proteins. This mechanism
could be used to delay cells differentiation. Decreasing the
coupling strength at a desired moment, would allow a stable
state to emerge.

Although computationally expensive, the use of detailed
models provides a better understanding of how GRNs of
cells in a tissue interact, and what behaviors emerge from
these interactions, providing clues to how to intervene to
obtain desired behaviors.
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